SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS):: PUTTUR

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu) (Accredited by NAAC with "A⁺" Grade & ISO 9001 : 2008 Certified Institution)

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Signals, Systems and Stochastic Processes (23EC0401) Course & Branch: B. Tech –ECE Year & Semester: II- B. Tech. & I-Semester

Regulation: R23

UNIT I Signals and Systems, Fourier Series

PART-A (2 MARKS)

1.	(a)	Define signal and system.	[L1][CO1]	[2M]
	(b)	Test whether the signal $y(t) = 3x(t) + 2$ is linear or non linear.	[L4][CO1]	[2M]
	(c)	Discuss about causal and non-causal, Time invariant and time variant systems.	[L2][CO1]	[2M]
	(d)	Define convolution and correlation.	[L1][CO1]	[2M]
	(e)	List any two properties of Fourier Series.	[L1][CO2]	[2M]

(a)	Define energy and power signals. Find the signal $x(t) = e^{-2t} u(t)$ is a power	[L3][C01]	[5M]
(u)	signal or anargy signal		
<i>(</i> 1)			
(b)	Discuss the following.	[L2][C01]	[5M]
	(i) Even and Odd signals		
	(ii) Periodic and Non-Periodic Signals.		
	Sketch the following signals for given x(t).	[L3][CO1]	[10M]
	(i) $x(t-4)$ (ii) $x(2t-4)$ (iii) $2x(2-t)$		
	$0 \qquad 1 \qquad 2 \qquad > t$		
(a)	Find the following system is linear system or non linear system.	[L3][CO1]	[5M]
	Y(t)=x(t).x(t-5)		
(b)	Define stability of the system. Find the stability for the following system.	[L3][CO1]	[5M]
	$y(t)=x^{2}(t)$.		
	Find the linearity, time-invariance, causality, stability and invertibility of the	[L3][CO1]	[10M]
	following system.		
	Y(t) = x(t+1) + x(t-1)		
	Find the exponential fourier series of the following signal	[L3][CO2]	[10M]
	g(t)	[20][002]	[_0]
	(a) (b) (a) (b)	 (a) Define energy and power signals. Find the signal x(t)= e^{-2t} u(t) is a power signal or energy signal. (b) Discuss the following. (i) Even and Odd signals (ii) Periodic and Non-Periodic Signals. Sketch the following signals for given x(t). (i) x(t-4) (ii) x(2t-4) (iii) 2x(2-t) (iii) x(t-4) (iii) x(2t-4) (iii) 2x(2-t) (a) Find the following system is linear system or non linear system. Y(t)=x(t).x(t-5) (b) Define stability of the system. Find the stability for the following system. y(t)=x²(t). Find the linearity, time-invariance, causality, stability and invertibility of the following system. Y(t)=x(t+1) + x(t-1) Find the exponential fourier series of the following signal. 	(a)Define energy and power signals. Find the signal $x(t) = e^{-2t}$ u(t) is a power[L3][C01]signal or energy signal.(L2][C01](b)Discuss the following. (i) Even and Odd signals (ii) Periodic and Non-Periodic Signals.[L3][C01](i)Sketch the following signals for given $x(t)$. (i) $x(t-4)$ (ii) $x(2t-4)$ (iii) $2x(2-t)$ [L3][C01](i)(i) $x(t-4)$ (ii) $x(2t-4)$ (iii) $2x(2-t)$ [L3][C01](a)Find the following system is linear system or non linear system. $Y(t)=x(t).x(t-5)$ [L3][C01](b)Define stability of the system. Find the stability for the following system. $y(t)=x^2(t).$ [L3][C01]Find the linearity, time-invariance, causality, stability and invertibility of the following system. $Y(t)=x(t+1) + x(t-1)$ [L3][C01]Find the exponential fourier series of the following signal. $x(t) = x^{(t)}$ [L3][C02] $x = \frac{x(t)}{x}$

7.	(a)	Sketch the signals of impulse, unit step and unit ramp function.	[L3][CO1]	[5M]
	(b)	Find the convolution of following two signals at time t=0.5 sec.	[L3][CO1]	[5M]
		$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$		
8.		A Rectangular function defined as $x(t) = \{A \text{ for } 0 \le t \le \pi/2 \}$	[L3][CO1]	[10M]
		-A for $\pi/2 < t < 3\pi/2$		
		A for $3\pi/2 < t < 2\pi$		
		Compute the above function by A cos t between the intervals $(0,2\pi)$ such		
		that mean square error is minimum		
9.	(a)	State and Prove Linearity and Time reversal properties of Fourier series	[L1][CO2]	[5M]
	(b)	Derive how exponential Fourier series is obtained from trigonometric series.	[L3][CO2]	[5M]
10.		Discuss about orthogonality in signals and derive the expression of selecting	[L2][CO1]	[10M]
		c_{12} to minimize the error between the actual function and the approximated		
		function over the time interval $t_1 < t < t_2$.		
11.	(a)	Find the odd and even components of the signal $x(t) = cost + sint + cost sint$.	[L3][CO1]	[5M]
	(b)	Discuss about dirichlets conditions for fourier series.	[L2][CO2]	[5M]

UNIT II Fourier Transform and Laplace Transform

PART-A (2 MARKS)

1.	(a)	Define sampling theorem.	[L3][CO2]	[2M]
	(b)	Find the fourier transform of $e^{-at} u(t)$	[L3][CO2]	[2M]
	(c)	Explain the time shifting property of Fourier transform.	[L1][CO3]	[2M]
	(d)	State the properties of ROC of Laplace Transform	[L1][CO2]	[2M]
	(e)	Find the laplace transform impulse signal.	[L2][CO2]	[2M]

2.		State and prove sampling theorem.	[L3][CO3]	[10M]
3.	(a)	Explain modulation property of Fourier transform	[L2][CO2]	[5M]
	(b)	Find the Fourier transform of the function e ^{at} u(-t)	[L3][CO2]	[5M]
4.		Find the Nyquist rate of the following signals. (a) x(t)=2 Sin 10πt. Sin 50πt (b) x(t)=cos²10πt 	[L3][CO3]	[10M]

5.	(a)	Find the inverse Fourier transform of the following signal.	[L3][CO4]	[5M]
		×(w)		
	(h)	-wo wo wo	[L1][CO2]	[5M]
	(0)	transform		
6.	(a)	State any six properties of Fourier Transform	[L1][CO4]	[5M]
	(b)	Find the Inverse Fourier Transform of the following signals	[L3][CO4]	[5M]
		$X(w) = \frac{(4)w + 6j}{(jw)^2 + 6jw + 8j} (ii) X(w) = \frac{(1 + 5)w}{(jw + 3)^2}$		
7.	(a)	State initial and final value theorem of Laplace Transform.	[L1][CO2]	[5M]
	(b)	Find the initial and final values of	[L3][CO4]	[5M]
		$X(s) = \frac{2s+5}{s^2+5s+6}$		
0				[7]
ð.	(a)	Find the transfer function of following system. $d^2 v(t) = dv(t)$	[L3][C04]	[3][1]
		$\frac{dy(t)}{dt^2} + 2\frac{dy(t)}{dt} = 3x(t)$		
	(b)	How fourier transform is derived from landess transform in a plane	[I 2][CO2]	[5M]
	(0)	How fourier transform is derived from taplace transform in s-plane.		[3][1]
9.	(a)	Explain convolution property of Laplace transform	[L2][CO2]	[5M]
	(b)	Find the Laplace transform of $x(t)=e^{-t}u(-t)+e^{5t}u(t)$	[L3][CO4]	[5M]
10.	(a)	Find the Laplace transform of $x(t)=e^{-at} u(t)$	[L3][CO4]	[5M]
	(h)	Consider the signal $x(t)=\cos6\pi t+\sin8\pi t$ where t is in seconds Find the	[L3][CO3]	[5M]
		Nyquist rate for $y(t)=x(2t+5)$		[****]
				FOD 53
11.	(a)	Find the Laplace transform of the function $f(t)=t^2-3t+5$	[L3][CO4]	[3M]
	(b)	If $L{f(t)} = s^2 e^x$ then find $L{f(4t)}$	[L3][CO4]	[3M]
	(c)	Define Inverse Laplace transform and find $L^{-1}\left\{\frac{s}{s^2+4s+3}\right\}$	[L1][CO4]	[4M]

UNIT III Signal Transmission through Linear Systems

PART-A (2 MARKS)

1.	(a)	Define LTI system.	[L1][CO1]	[2M]
	(b)	What is impulse response.	[L1][CO4]	[2M]
	(c)	Define system bandwidth and signal bandwidth.	[L1][CO4]	[2M]
	(d)	Explain about Paley-Wiener criterion.	[L2][CO4]	[2M]
	(e)	Define Energy and Power spectral densities.	[L1][CO2]	[2M]

2.	(a)	Sketch the magnitude and phase response for a distortion less transmission system.	[L3][CO4]	[5M]
	(b)	Suppose a transmission system has the frequency response as shown below.	[L5][CO2]	[5M]
		\rightarrow \uparrow		
		For what range of frequency there is no distortion and explain the reason.		
3.		Derive the output response of linear time invariant system.	[L3[CO4]	[10M]
4	(a)	Define linear time variant system	[I 1][CO1]	[5M]
4.	(a) (b)	For a discrete system having $x[n] = \{1, 2, 3, 4\}$ and $h[n] = \{1, 2, 1, -1\}$ find the		[5][1]
	(0)	r of a discrete system having $x[n] = (1,2,3,4)$ and $n[n] = (1,2,1,4)$ find the output response $v[n]$		
5.	(a)	Find the output of LTI system for input of impulse	[L3][CO1]	[3M]
	(b)	State the condition for LTI system to be causal and stable.	[L3][C01]	[4M]
	(c)	List the properties of convolution integral.	[L3][C01]	[3M]
6.		Let $x(t) = e^{-at}u(t)$, where a>0, be the input to an LTI system with impulse	[L3][CO4]	[10M]
7		response $h(t)=u(t)$. Calculate the response of the system.	II 21[CO4]	[10]
/.		What do you understand by the term signal bandwidth?		
8.	(a)	Explain the ideal filter characteristics.	[L2][CO3]	[5M]
		The second state of a large state of a second second base of the Delay		 [=]/[]
	(D)	Wiener criterion.	[L2][C04]	[3]/1]
9.		Derive the relationship between the bandwidth and rise time of ideal low	[L3][CO4]	[10M]
		pass Filter.		
10.	(a)	Define the Energy Spectral Density Function and list the properties of ESD.	[L1][CO2]	[5M]
	(b)	Derive the relation between ESD and Auto Correlation Function.	[L3][CO2]	[5M]
11.	(a)	Define the Power Spectral Density Function and list the properties of PSD.	[L1][CO2]	[5M]
	(b)	Derive the relation between PSD and Auto Correlation Function.	[L3][CO2]	[5M]

UNIT IV Random Processes – Temporal Characteristics

PART-A (2 MARKS)

1.	(a)	Differentiate between Random Processes and Random variables with example.	[L4][CO5]	[2M]
	(b)	Define wide sense stationary random processes.	[L1][CO6]	[2M]
	(c)	Give the statement of ergodic theorem.	[L2][CO6]	[2M]
	(d)	How two random processes X(t)& Y(t) are said to be independent.	[L2][CO5]	[2M]
	(e)	Define the cross correlation function between two random processes $X(t)$ & $Y(t)$.	[L1][CO6]	[2M]

2.	(a)	Define Wide Sense Stationary Process and write it's conditions.	[L1][CO6]	[5M]
	(b)	A random process is given as $X(t) = At$, where A is a uniformly distributed random variable on (0,2). Find whether $X(t)$ is wide sense stationary or not.	[L3][CO5]	[5M]
3.		X(t) is a stationary random process with a mean of 3 and an auto correlation function of 6+5 exp (-0.2 $ \tau $). Find the second central Moment of the random variable Y=Z-W, where Z and W are the samples of the random process at t=4 sec and t=8 sec respectively.	[L3][CO5]	[10M]
4.		Explain the following i. Stationarity ii. Ergodicity iii. Statistical independence with respect to random processes	[L2][CO6]	[10M]
5.	(a)	Given the Random Process $X(t) = A \cos(w_0 t) + B \sin(w_0 t)$ where ω_0 is a constant, and A and B are uncorrelated Zero mean random variables having different density functions but the same variance $\sigma 2$. Show that $X(t)$ is wide sense stationary.	[L2][CO5]	[5M]
	(b)	Define Covariance of the Random processes with any two properties.	[L1][CO6]	[5M]
6.	(a)	A Gaussian RP has an auto correlation function $RXX(\tau)=6 \sin (\pi \tau)/\pi \tau$. Determine a covariance matrix for the Random variable X(t).	[L3][CO6]	[5M]
-	(b)	Derive the expression for cross correlation function between the input and output of a LTI system.	[L3][CO3]	[5M]
7.		Explain about Poisson Random process and also find its mean and variance.	[L2][CO6]	[10M]
8.		Briefly explain the distribution and density functions in the context of stationary and independent random processes.	[L2][CO6]	[10M]
9.		Explain about the following random process (i) Mean ergodic process (ii) Correlation ergodic process (iii) Gaussian random process	[L2][CO6]	[10 M]
10.		State and prove the auto correlation and cross correlation function	[L1][CO3]	[10M]
11.		The function of time $Z(t) = X_1 \cos \omega_0 t$ - $X_2 \sin \omega_0 t$ is a random process. If X_1 and X_2 are independent Gaussian random variables, each with zero mean and variance $\sigma 2$, find E[Z], E[Z ²] and var(z).	[L3][CO5]	[10M]

UNIT V Random Processes – Spectral Characteristics

PART-A (2 MARKS)

1.	(a)	Define Power Spectrum Density.	[L1][CO2]	[2M]
	(b)	Give the statement of Wiener-Khinchin relation.	[L2][CO6]	[2M]
	(c)	Define spectrum Band width and RMS bandwidth.	[L1][CO2]	[2M]
	(d)	List any two properties of Power Spectrum Density.	[L1][CO2]	[2M]
	(e)	If X(t) & Y(t) are uncorrelated and have constant mean values <i>X</i> & <i>Y</i> then show that $SXX(\omega) = 2\Pi X Y \delta(\omega)$.	[L1][CO5]	[2M]

PART-B (10 MARKS)

2.	(a)	Check the following power spectral density functions are valid or not	[L6][CO2]	[5M]
		<i>i</i>) $\cos^{8}(\omega)/(2 + \omega^{4})$ <i>ii</i>) $e^{-(\omega^{-1})^{2}}$		
	(b)	Derive the relation between input PSD and output PSD of an LTI system.	[L3][CO2]	[5M]
3.		Derive the relationship between cross-power spectral density and cross	[L3][CO2]	[10M]
		correlation function.		
4.		A stationery random process X(t) has spectral density SXX(ω)=25/(ω^2 +25) and	[L3][CO6]	[10M]
		an independent stationary process Y(t) has the spectral density		
		SYY(ω)= $\omega^2 / (\omega^2 + 25)$. If X(t) and Y(t) are of zero mean, find the:		
		a) PSD of $Z(t)=X(t) + Y(t)$		
_		b) Cross spectral density of $X(t)$ and $Z(t)$		
5.	(a)	The input to an L II system with impulse response $h(t) = \delta(t) + t^2 e^{-at}$. U(t) is a WSS process with mean of 2. Find the mean of the output of the system	[L3][C03]	[5M]
	(b)	Define Power Spectral density with three properties	[I_1][CO2]	[5M]
	(0)	Define Fower Spectral density with three properties.		
6.	(a)	A random process Y(t) has the power spectral density $SYY(\omega) = 9/(\omega^2+64)$	[L3][CO6]	[5M]
		Find		
		i. The average power of the process		
		11. The Auto correlation function		[5]/[]
	(D)	A random process has the power density spectrum $SYY(\omega) = 6\omega^2/(1+\omega^4)$ Find the average power in the process		
7	(a)	Analyze the cross correlation function corresponding to the cross power spectrum	[I .4][CO2]	[5M]
· •	(u)	$SXY(\omega) = 6 / [(9+\omega^2)(3+j\omega)^2].$		
	(b)	Explain briefly about cross power density spectrum.	[L2][CO2]	[5M]
8.	(a)	Consider a random process $X(t) = \cos(\omega t + \theta)$ where ω is a real constant and θ is a	[L3][CO6]	[5M]
	(b)	uniform random variable in $(0, \pi/2)$. Find the average power in the process.		[5M]
	(U)	Define and derive the expression for average power of Kandom process.		
9.		The power spectrum density function of a stationary random process is given by	[L3][CO6]	[10M]
		$SXX(\omega) = A, -K < \omega < K 0$, other wise Find the auto correlation function.		
10.	(a)	Define and derive the expression for average cross power between two random	[L3][CO6]	[5M]
		process $X(t)$ and $Y(t)$.		573 63
	(b)	Find the power spectral density for $RXX(\tau) = A^2/2 \sin(\omega 0\tau)$.	[L3][CO2]	[5M]
11.	(a)	Show that $SXX(-\omega) = SXX(\omega)$. i.e., Power spectrum density is even function of ω .	[L2][CO2]	[5M]
	(b)	If the Power spectrum density of $x(t)$ is $SXX(\omega)$, find the PSD of $dx(t)/dt$.	[L3][CO2]	[5M]

Prepared by:

S.V.Rajesh Kumar, Assistant Professor, Dept. of ECE, SIETK. G.Priyanka, Assistant Professor, Dept. of ECE, SIETK.